A UB3LYP and UMP2 theoretical investigation on unusual cation $-\pi$ interaction between the triplet state $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{\mathrm{g}}^{-}\right)$and $\mathrm{H}^{+}, \mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{Be}^{2+}$ or $\mathbf{M g}^{2+}$

Wen-zheng Xu • Fu-de Ren • Jun Ren • Sheng-nan Liu • Yuan Yue • Wen-liang Wang • Shu-sen Chen

Received: 10 June 2009 / Accepted: 26 July 2009 /Published online: 2 September 2009
(C) Springer-Verlag 2009

Abstract

The nature of the unusual cation $-\pi$ interactions between cations $\left(\mathrm{H}^{+}, \mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{Be}^{2+}\right.$ and $\left.\mathrm{Mg}^{2+}\right)$ and the electron-deficient $B=B$ bond of the triplet state $H B=B H$ $\left({ }^{3} \Sigma_{g}^{-}\right)$was investigated using UMP2(full) and UB3LYP methods at $6-311++G(2 d f, 2 p)$ and aug-cc-pVTZ levels, accompanied by a comparison with $1: 1$ and $2: 1 \sigma$-binding complexes between BH and the cations. The binding energies follow the order $\mathrm{HB}=\mathrm{BH} . . . \mathrm{H}^{+}>\mathrm{HB}=\mathrm{BH} \ldots$ $\mathrm{Be}^{2+}>\mathrm{HB}=\mathrm{BH} \ldots \mathrm{Mg}^{2+}>\mathrm{HB}=\mathrm{BH} . . . \mathrm{Li}^{+}>\mathrm{HB}=\mathrm{BH} \ldots \mathrm{Na}^{+}$ and $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}>\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}>$ $\mathrm{HC} \equiv \mathrm{CH} \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}>\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$. Furthermore, except for $\mathrm{HB} \ldots \mathrm{H}^{+}$, the σ-binding interaction energy of the $1: 1$ complex $\mathrm{HB} . . . \mathrm{M}^{+} / \mathrm{M}^{2+}$ is stronger than the cation $-\pi$

[^0]interaction energy of the $\mathrm{C}_{2} \mathrm{H}_{2} \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}, \mathrm{C}_{2} \mathrm{H}_{4} \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$, $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$ or $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$ complex, and, for the 2:1 σ-binding complexes, except for $\mathrm{HBBe}^{2+} \ldots \mathrm{BH}$, they are less stable than the cation $-\pi$ complexes of $\mathrm{B}_{2} \mathrm{H}_{2}$ $\left({ }^{1} \Delta_{\mathrm{g}}\right)$ or $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{3} \Sigma_{g}^{-}\right)$. The atoms in molecules (AIM) theory was also applied to verify covalent interactions in the H^{+} complexes and confirm that $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$can be a weaker π-electron donor than $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right), \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ or $\mathrm{HC} \equiv \mathrm{CH}$ in the cation $-\pi$ interaction. Analyses of natural bond orbital (NBO) and electron density shifts revealed that the origin of the cation $-\pi$ interaction is mainly that many of the lost densities from the π-orbital of $\mathrm{B}=\mathrm{B}$ and CC multiple bonds are shifted toward the cations.

Keywords $\mathrm{B}=\mathrm{B}$ double bond \cdot Cation $-\pi$ interaction .
Electron density shifts

Introduction

Recently, due to their extremely important roles in a wide range of biological and chemical fields (including enzymesubstrate recognition, catalyst development, new drugs and nanomaterial design), cation $-\pi$ interactions have received much attention in experimental studies and theoretical calculations [1-26]. It has been shown that, due to the strong fluidity of the π-electrons of the electron-rich species, cation $-\pi$ interactions can be established between electron-rich multiple bonds such as double bonds, triple bonds, aromatic and cyclooctatetraene rings and their derivatives as π-electron donors, and cations $\left(\mathrm{H}^{+}, \mathrm{NH}_{4}^{+}\right.$ and the alkali-metal, alkaline earth-metal, transition-metal cations, etc.) [1-26]. Very interestingly, we have recently investigated cation $-\pi$ interactions between cations $\left(\mathrm{H}^{+}, \mathrm{Li}^{+}\right.$,
$\mathrm{Na}^{+}, \mathrm{Be}^{2+}$ and $\left.\mathrm{Mg}^{2+}\right)$ and the singlet state $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right)$ or $\mathrm{HC} \equiv \mathrm{CH}$, confirming that $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right)$ can form stronger cation $-\pi$ interactions than $\mathrm{HC} \equiv \mathrm{CH}$ [1]. This result has suggested that π-electrons prefer to be released from the electron-deficient $\mathrm{B}=\mathrm{B}$ double bond, and that the electrondeficient $\mathrm{B}=\mathrm{B}$ double bond might also act as a π-electron donor to form cation $-\pi$ interactions. Then, since the electron-deficient $\mathrm{B}=\mathrm{B}$ bond of $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$is weaker than that of $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right)$ [27], can it act as a π-electron donor to form cation $-\pi$ interactions? However, to our knowledge, no investigation on the cation $-\pi$ interaction involving the $\mathrm{B}=\mathrm{B}$ bond of $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$as π-electron donor has been presented.

For a long time, $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$has been of great chemical interest in exploring the nature of the electrondeficient $\mathrm{B}=\mathrm{B}$ double-bond [27-36]. Knight et al. [27] reported the first definitive experimental characterization and carried out the CI calculations. They found that the valence molecular orbitals of $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$were $\left(2 \sigma_{\mathrm{g}}\right)^{2}\left(2 \sigma_{\mathrm{u}}\right)^{2}\left(3 \sigma_{\mathrm{g}}\right)^{2}$ and $\left(1 \pi_{\mathrm{u}}\right)^{2}$, where the two unpaired electrons occupy degenerate boron $2 p_{x}$ and $2 p_{y}$ bonding orbitals, indicating that it could be described as acetylene with one electron removed from each of the π type orbitals [27]. This suggests that, akin to acetylene, the electrondeficient $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{3} \Sigma_{g}^{-}\right)$might offer π-electrons the possibility to form cation $-\pi$ interactions with $\mathrm{H}^{+}, \mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{Be}^{2+}$ and Mg^{2+}.

In this work, our goal was to test the unusual cation $-\pi$ interaction between the electron-deficient $\mathrm{B}=\mathrm{B}$ double bond of the triplet state $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$and $\mathrm{H}^{+}, \mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{Be}^{2+}$ or Mg^{2+}. For this type of novel cation $-\pi$ interaction, theoretical investigation will first be used to reveal the nature of the interaction in order to allow further theoretical and experimental study of the structures and activities of complexes involving electron-deficient species as π electron donors.

As a new and unusual π-electron donor for cation $-\pi$ interactions, it is essential to compare the $\mathrm{B}=\mathrm{B}$ bond with the conventional π-electron donor CC multiple bond. First, since the electron structure of $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{3} \Sigma_{g}^{-}\right)$resembles that of $\mathrm{C}_{2} \mathrm{H}_{2}[27,36]$, it becomes possible to adequately describe the properties of these cation $-\pi$ complexes with $\mathrm{B}_{2} \mathrm{H}_{2}$ $\left({ }^{3} \Sigma_{g}^{-}\right)$and to explore the nature of the cation $-\pi$ interaction. Secondly, the greater the flow of π-electrons, the stronger the cation $-\pi$ interaction becomes. In general, due to the nature of the electron-deficient $\mathrm{B}=\mathrm{B}$ bond, fluidity of the π electrons is weaker for the $\mathrm{B}=\mathrm{B}$ bond than for the CC multiple bond, resulting in poorer cation $-\pi$ interactions in
complexes involving the $\mathrm{B}=\mathrm{B}$ bonds. However, the electron is released more easily from the boron atom than from the carbon atom due to the metallicity of the boron atom, perhaps leading to the stronger cation $-\pi$ interaction observed. Thus the question arises, is the $\mathrm{B}=\mathrm{B}$ bond of $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{3} \Sigma_{g}^{-}\right)$a weaker or stronger π-electron donor for the cation $-\pi$ interaction than the CC multiple bonds?

Computational methods

It is well established that high-level quantum chemical calculations with electron correlations and a large basis set including both diffuse and polarization functions are crucial to adequately describe the properties of these complexes [37-40]. Furthermore, the augmented correlation-consistent polarized valence-triple- ζ (aug-cc-pVTZ) basis set has been successfully applied in order to understand the nature of intermolecular interactions as well as changes in the structural, electronic and vibrational properties after molecular complexation [37-40]. On the other hand, the isolated $\mathrm{HB}=\mathrm{BH}$ monomer has an open-shell ground electronic state $\left({ }^{3} \Sigma_{g}^{-}\right)$so we decided to use the DFT-UB3LYP and UMP2 (full) methods with $6-311++\mathrm{G}(2 \mathrm{df}, 2 \mathrm{p})$ and aug-cc-pVTZ atomic basis sets for the monomer and complexes of $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$in this investigation. The B3LYP and MP2 (full) methods were employed only with $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right)$, $\mathrm{HC} \equiv \mathrm{CH}$ or $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$.

All calculations were performed using Gaussian 03 programs [41]. All possible cation $-\pi$ interaction complexes were fully optimized using (U)MP2(full) and (U)B3LYP methods with the $6-311++G(2 d f, 2 p)$ and aug-cc-pVTZ basis sets. The complexes with $\mathrm{H}^{+}, \mathrm{Li}^{+}$and Na^{+}corresponding to the minimum energy points-at which the harmonic frequency analyses were carried out and the complexes have no imaginary frequency-at the molecular energy hypersurface were obtained. In contrast, the Be^{2+} and Mg^{2+} complexes with $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right), \mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ and $\mathrm{HC} \equiv \mathrm{CH}$ are not true minima, and vibrational analysis gives one imaginary frequency for each complex. Natural bonding analysis [42] was also carried out at (U) MP2(full)/aug-cc-pVTZ. The shifts in electron density [43] that accompany formation of cation $-\pi$ interactions were displayed at (U)MP2(full)/aug-cc-pVTZ level using the program GaussView, and the topological electron charge densities were analyzed by the atoms in molecules (AIM) method [44] using the program AIMPAC [45] at the same level. The frequency shifts $(\Delta \nu)$, defined as the difference between

the frequency of the certain vibrational mode in the complex and in the isolated $\mathrm{B}_{2} \mathrm{H}_{2}$, can be expressed as follows:
$\Delta v=v_{\text {complex }}-v_{\text {monomer }}$
Binding energy $\left(D_{\mathrm{e}}\right)$ is defined as:
Because the deformation energy ($\Delta E_{\text {def. }}$), defined as the energy difference between the isolated molecule and the molecular framework at the geometry of the complex, is often negligible [37-40], the value of cation $-\pi$ interaction energy $\left(\Delta E_{\text {cation- } \pi}\right)$ is almost equal to that of the binding energy $\left(D_{\mathrm{e}}\right)$. So, for these systems, it can be expressed as follows:
$D e=E_{\left(\mathrm{HB}=\mathrm{BH}-\mathrm{M}^{+} / \mathrm{M}^{2+}\right) \text { complex }}-E_{(\mathrm{HB}=\mathrm{BH}) \text { mono. }}-E_{\left(\mathrm{M}^{+} / \mathrm{M}^{2+}\right) \text { mono }}$

The D_{e} corrected for the basis set superposition error (BSSE) [46, 47] and zero-point energy (ZPE) correction was evaluated.

Results and discussion

The atomic labels and bond critical points (BCPs) of the complexes are shown in Fig. 1, and the corresponding geometry parameters and binding energies are listed in Tables 1 and 2, respectively. The frequency shifts of $\mathrm{B}_{2} \mathrm{H}_{2}$ $\left({ }^{3} \Sigma_{g}^{-}\right)$in complexes are presented in Table 3. The natural bond orbital (NBO) analysis and the electron densities at the BCPs are given in Tables 4 and 5, respectively. The plot of binding energies versus $\rho_{\mathrm{BCP}(\text { cation } \cdots \pi)}$ and the shifts of electron densities are illustrated in Figs. 2 and 3, respec-
tively. The results reveal that the nature of the cation $-\pi$ interaction between $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$and $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{Be}^{2+}$ or Mg^{2+} is that many of the lost densities from the π-orbital of $\mathrm{B}=\mathrm{B}$ and CC multiple bonds are shifted toward the cations, and $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$acts as a weaker π-electron donor of the cation $-\pi$ interaction than $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right), \mathrm{HC} \equiv \mathrm{CH}$ or $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$. Furthermore, all the complexes of H^{+}are indicative of covalent interactions.

Geometry of the complex
As can be seen from Fig. 1, all the cation $-\pi$ complexes form the $C_{2 \mathrm{~V}}$ T-shape with the cations lying perpendicular to the $\mathrm{B}=\mathrm{B}$ or CC multiple bonds and pointing toward to their midpoints. $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$ is of electronic state ${ }^{3} \mathrm{~B}_{1}$, whereas the others are the ${ }^{1} \mathrm{~A}_{1}$ electronic states.

From Table 1, for $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{H}^{+}$, the increment of the $\mathrm{B}=\mathrm{B}$ bond length is increased by $0.074 \AA$, i.e., higher than those of the CC multiple bonds in $\mathrm{HC} \equiv \mathrm{CH} . . . \mathrm{H}^{+}$and $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{H}^{+}$by 58.0 and $27.0 \mathrm{~m} \AA$ at (U)MP2(full)/aug-cc-PVTZ level, respectively. It is also larger than that of the $\mathrm{B}=\mathrm{B}$ bond length in $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{H}^{+}$by $30.0 \mathrm{~m} \AA$ at the same level. Furthermore, the distance of the $\mathrm{H}^{+} \ldots \pi$ bond in $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{H}^{+}$is $1.068 \AA$, whereas the corresponding values in $\mathrm{HC} \equiv \mathrm{CH} \ldots \mathrm{H}^{+}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{H}^{+}$and $\mathrm{HB}=\mathrm{BH}$ $\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{H}^{+}$are $1.112,1.107$ and $1.187 \AA$, i.e., lower than those in the complexes of $\mathrm{HC} \equiv \mathrm{CH}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ and $\mathrm{HB}=\mathrm{BH}$ $\left({ }^{1} \Delta_{\mathrm{g}}\right)$ by $0.044,0.039$ and $0.119 \AA$ at (U)MP2(full)/aug-ccPVTZ level, respectively. Thus, a cation $-\pi$ interaction in $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{H}^{+}$is suggested.

Fig. 1 Molecular structures and bond critical points (BCPs) of the cation $-\pi$ complexes

$\mathrm{HB}=\mathrm{BH} . . . \mathrm{Na}^{+}$
$\mathrm{HB}=\mathrm{BH} . . . \mathrm{Be}^{2+}$
$\mathrm{HB}=\mathrm{BH} \ldots \mathrm{Mg}^{2+}$

$$
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{H}^{+}
$$

$$
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Li}^{+}
$$

$$
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Na}^{+}
$$

$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Na}^{+}$

$\mathrm{HC} \equiv \mathrm{CH} . . . \mathrm{Na}^{+}$

$$
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Be}^{2+}
$$

$$
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Mg}^{2+}
$$

$\mathrm{HC} \equiv \mathrm{CH} \ldots \mathrm{Be}^{2+}$
$\mathrm{HC} \equiv \mathrm{CH} \ldots \mathrm{Mg}^{2+}$

Table 1 Principal geometry parameters (in \AA) for $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right), \mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right), \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}, \mathrm{HC} \equiv \mathrm{CH}$ and their complexes

	$\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$	$\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{H}^{+}$		$\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Li}^{+}$		$\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Na}^{+}$		$\begin{aligned} & \mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \\ & \mathrm{Be}^{2+} \end{aligned}$		$\begin{aligned} & \mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \\ & \mathrm{Mg}^{2+} \end{aligned}$	
$\mathrm{R}\left(\mathrm{M}^{+} / \mathrm{M}^{2+} \ldots \pi\right)$		$1.087^{\text {a }}$	$1.087^{\text {b }}$	2.475	2.471	2.878	2.878	1.906	1.906	2.763	2.763
$\mathrm{R}(\mathrm{B} 1=\mathrm{B} 2)$		$1.073^{\text {c }}$	$1.068^{\text {d }}$	2.492	2.459	2.900	2.871	1.914	1.894	2.498	2.444
	$1.506^{\mathrm{a}} 1.506^{\text {b }}$	1.586	1.586	1.519	1.519	1.516	1.516	1.589	1.589	1.569	1.569
	$1.505^{\text {c }} 1.499^{\text {d }}$	1.579	1.573	1.518	1.512	1.515	1.508	1.587	1.577	1.557	1.547
	$\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right)$	$\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{H}^{+}$		$\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Li}^{+}$		$\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots . \mathrm{Na}^{+}$		$\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Be}^{2+}$		$\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Mg}^{2+}$	
$\mathrm{R}\left(\mathrm{M}^{+} / \mathrm{M}^{2+} \ldots \pi\right)^{\mathrm{e}}$		$1.199^{\text {a }}$	$1.201^{\text {b }}$	2.486	2.479	2.836	2.836	2.241	2.241	2.634	2.634
		$1.187^{\text {c }}$	$1.187^{\text {d }}$	2.486	2.466	2.855	2.839	2.212	2.176	2.590	2.556
$\mathrm{R}(\mathrm{B} 1=\mathrm{B} 2)^{\mathrm{e}}$	$1.520^{\mathrm{a}} \quad 1.520^{\mathrm{b}}$	1.565	1.565	1.534	1.534	1.534	1.534	1.608	1.608	1.590	1.590
	$1.524^{\mathrm{c}} \quad 1.518^{\text {d }}$	1.565	1.558	1.538	1.530	1.537	1.529	1.608	1.596	1.585	1.575
	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{H}^{+}$		$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Li}^{+}$		$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Na}^{+}$		$\mathrm{HC}=\mathrm{CH} . . . \mathrm{Be}^{2+}$		$\mathrm{HC}=\mathrm{CH} \ldots \mathrm{Mg}^{2+}$	
$\mathrm{R}\left(\mathrm{M}^{+} / \mathrm{M}^{2+} \ldots \pi\right)$		$1.125^{\text {a }}$	$1.125^{\text {b }}$	2.266	2.266	2.646	2.644	1.869	1.869	2.304	2.303
		$1.108^{\text {c }}$	$1.107^{\text {d }}$	2.264	2.239	2.645	2.625	1.857	1.841	2.256	2.256
$\mathrm{R}(\mathrm{C} 1=\mathrm{C} 2)$	$1.325^{\text {a }} 1.325^{\text {b }}$	1.376	1.376	1.337	1.337	1.335	1.335	1.382	1.381	1.368	1.368
	$1.329^{\text {c }} 1.328^{\text {d }}$	1.376	1.375	1.340	1.339	1.338	1.336	1.379	1.377	1.364	1.363
	$\mathrm{HC} \equiv \mathrm{CH}$	$\mathrm{HC} \equiv \mathrm{CH} . . . \mathrm{H}^{+}$		$\mathrm{HC} \equiv \mathrm{CH} . . . \mathrm{Li}^{+}$		$\mathrm{HC} \equiv \mathrm{CH} . . . \mathrm{Na}^{+}$		$\mathrm{HC} \equiv \mathrm{CH} . . . \mathrm{Be}^{2+}$		$\mathrm{HC} \equiv \mathrm{CH} . . . \mathrm{Mg}^{2+}$	
$\mathrm{R}\left(\mathrm{M}^{+} / \mathrm{M}^{2+} \ldots \pi\right)$		$1.134^{\text {a }}$	$1.134^{\text {b }}$	2.213	2.213	2.610	2.612	1.787	1.789	2.256	2.256
		$1.115^{\text {c }}$	$1.112^{\text {d }}$	2.211	2.197	2.610	2.610	1.784	1.774	2.243	2.224
$\mathrm{R}(\mathrm{C} 1 \equiv \mathrm{C} 2)$	$1.196^{\text {a }} 1.196^{\text {b }}$	1.217	1.217	1.202	1.202	1.200	1.200	1.223	1.223	1.216	1.216
	$1.208^{\text {c }} 1.208^{\text {d }}$	1.225	1.224	1.213	1.214	1.212	1.212	1.232	1.231	1.225	1.224

${ }^{\text {a }}$ At (U)B3LYP/6-311++G(2df,2p) level
${ }^{\text {b }}$ At (U)B3LYP/aug-cc-PVTZ level
${ }^{\text {c }}$ At (U)MP2(full)/6-311++G(2df,2p) level
${ }^{\text {d }}$ At (U)MP2(full)/aug-cc-PVTZ level
${ }^{\mathrm{e}}$ Calculated values from Ref. [1]

Similar to $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{H}^{+}$, the cation $-\pi$ interaction is also found in $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Li}^{+}$or $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots$ Na^{+}, according to the higher increments of the $\mathrm{B}=\mathrm{B}$ bond lengths and the larger slightly $\mathrm{M}^{+} \ldots \pi$ bond distances than in $\mathrm{HC} \equiv \mathrm{CH} / \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Li}^{+}$or $\mathrm{HC} \equiv \mathrm{CH} / \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Na}^{+}$. The increments of the $\mathrm{B}=\mathrm{B}$ bond lengths are increased by 0.013 and $0.009 \AA$ in $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Li}^{+}$and $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots$ Na^{+}, whereas the corresponding values of the $\mathrm{C} \equiv \mathrm{C}$ bond distances in $\mathrm{HC} \equiv \mathrm{CH} . . . \mathrm{Li}^{+} / \mathrm{Na}^{+}$are both elongated by 0.004 \AA, and those of the $\mathrm{C}=\mathrm{C}$ bond distances are 0.011 and $0.008 \AA$ at (U)MP2(full)/aug-cc-PVTZ level, respectively. Furthermore, the increment of the $\mathrm{B}=\mathrm{B}$ bond length in $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Li}^{+} / \mathrm{Na}^{+}$is close to that in $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots$ $\mathrm{Li}^{+}(0.012 \AA)$ and $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Na}^{+}(0.011 \AA)$. In $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Li}^{+}$and $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Na}^{+}, \mathrm{M}^{+} \ldots \pi$ bond distances are 2.459 and $2.871 \AA$, respectively, while for the complexes of $\mathrm{HC} \equiv \mathrm{CH}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ and $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right)$, $\mathrm{Li}^{+} \ldots \pi$ bond distances are $2.197,2.239$ and $2.466 \AA$, and $\mathrm{Na}^{+} \ldots \pi$ bond lengths are up to $2.610,2.625$ and $2.839 \AA$ with the (U)MP2(full)/aug-cc-PVTZ method, respectively.

Cation $-\pi$ interactions are also observed in both $\mathrm{HB}=\mathrm{BH}$ $\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Be}^{2+}$ and $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Mg}^{2+}$ (Table 1 and

Fig. 1). The distance of the $\mathrm{B}=\mathrm{B}$ bond is lengthened from 1.499 to 1.577 and $1.547 \AA$ in $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Be}^{2+}$ and $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Mg}^{2+}$ at UMP2(full)/aug-cc-PVTZ level, respectively. However, it is changed only from 1.208 to 1.231 and $1.224 \AA$ in the $\mathrm{HC} \equiv \mathrm{CH}$ complexes, from 1.328 to 1.377 and $1.363 \AA$ in the complexes of $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$, and from 1.518 to 1.596 and $1.575 \AA$ in $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Be}^{2+}$ and $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Mg}^{2+}$, respectively. Furthermore, the distance of the $\mathrm{M}^{2+} \ldots \pi$ bond in $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Be}^{2+}$ or $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Mg}^{2+}$, up to 1.894 or $2.444 \AA$, is close to those in the complexes of $\mathrm{HC} \equiv \mathrm{CH}$ (1.774 and $2.224 \AA$) or $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ (1.841 and $2.256 \AA$) at (U)MP2(full)/aug-ccPVTZ level, respectively. Moreover, the distance of the $\mathrm{M}^{2+} \ldots \pi$ bond in $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Be}^{2+}$ or $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots$ Mg^{2+} is lower than that in $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Be}^{2+}(2.176 \AA)$ or $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Mg}^{2+}(2.556 \AA)$.

As can be seen from Table 1, the distance of the cation $-\pi$ bond follows the same order of $\mathrm{Na}^{+} \ldots \pi>\mathrm{Li}^{+} \ldots \pi$ or $\mathrm{Mg}^{2+} \ldots \pi>\mathrm{Be}^{2+} \ldots \pi$ at four levels for each of the complexes, and the increments of the $\mathrm{B}=\mathrm{B}, \mathrm{C} \equiv \mathrm{C}$ or $\mathrm{C}=\mathrm{C}$ bond length follow the same order in $\mathrm{Na}^{+} \ldots \pi<\mathrm{Li}^{+} \ldots \pi$ or $\mathrm{Mg}^{2+} \ldots \pi<\mathrm{Be}^{2+} \ldots \pi$ complexes. These results suggest that the strength of the

Table 2 Binding energies of the cation $-\pi$ complexes $\left[-D_{e}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)\right]$

	$\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{H}^{+}$	$\mathrm{HB}=\mathrm{BH}\left(\Sigma^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Li}^{+}$	$\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Na}^{+}$	$\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Be}^{2+}$	$\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Mg}^{2+}$
UMp2(full)/6-311++G**	623.46 (617.01) ${ }^{\text {a }}$	51.76 (48.51)	30.73 (27.67)	497.58 (491.47)	243.25 (238.99)
UMp2(full)/6-311++G(2df,2p)	$620.81(617.35)^{\text {a }}$	53.74 (51.39)	35.15 (32.80)	497.45 (493.09)	248.94 (245.50)
	$597.48^{\text {b }}$	49.59	31.74	493.90	245.67
UMP2(full)/aug-cc-pVTZ	624.25 (617.59)	58.04 (52.10)	40.88 (31.13)	513.87 (491.76)	261.23 (245.68)
	598.50	50.54	29.76	493.40	246.10
UB3LYP/6-311++G(2df,2p)	620.54	57.07 (56.33)	37.67 (36.14)	530.84 (530.21)	284.46 (283.49)
		54.53	35.00	531.45	284.06
UB3LYP/aug-cc-pVTZ	621.19	58.02 (57.43)	37.40 (37.07)	532.53 (531.78)	287.02 (286.42)
		55.65	35.93	533.05	287.02
	$\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{H}^{+}$	$\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Li}^{+}$	$\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Na}^{+}$	$\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots . . \mathrm{Be}^{2+}$	$\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Mg}^{2+}$
MP2(full)/6-311++G** ${ }^{\text {c }}$	857.88 (852.87) ${ }^{\text {a }}$	116.39 (111.78)	78.88 (74.64)	723.21 (716.60)	411.32 (405.84)
MP2(full)/6-311++G(2df,2p) ${ }^{\text {c }}$	851.12 (848.43) ${ }^{\text {a }}$	115.63 (112.43)	81.78 (77.26)	714.92 (710.37)	410.40 (406.32)
	$832.31{ }^{\text {b }}$	109.23	75.16	707.92	404.68
MP2(full)/aug-cc-pVTZ ${ }^{\text {c }}$	854.36 (849.32)	119.15 (112.88)	86.11 (75.84)	725.61 (708.08)	419.61 (405.45)
	834.26	110.07	73.54	706.13	404.20
B3LYP/6-311++G(2df,2p) ${ }^{\text {c }}$	849.65	120.34 (119.55)	88.08 (86.43)	744.54 (743.97)	453.35 (452.11)
		116.51	84.35	742.09	450.81
B3LYP/aug-cc-pVTZ ${ }^{\text {c }}$	849.82	120.97 (120.43)	87.33 (87.04)	745.85 (745.26)	455.02 (454.67)
		117.49	85.05	743.57	453.51
	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots . . \mathrm{H}^{+}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots . . \mathrm{Li}{ }^{+}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} . . . \mathrm{Na}^{+}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2 . .} \mathrm{Be}^{2+}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} . . . \mathrm{Mg}^{2+}$
Mp2(full)/6-311++G**	702.93 (693.75) ${ }^{\text {a }}$	88.39 (82.11)	57.01 (51.54)	565.63 (554.78)	295.77 (287.59)
Mp2(full)/6-311++G(2df,2p)	694.97 (690.13) ${ }^{\text {a }}$	88.90 (84.72)	60.71 (55.21)	564.02 (557.69)	302.38 (296.71)
	$662.44{ }^{\text {b }}$	79.86	51.63	554.73	293.03
MP2(full)/aug-cc-pVTZ	701.00 (691.88)	94.51 (86.28)	66.56 (54.65)	585.70 (559.71)	319.65 (299.32)
	663.74	81.36	52.27	556.94	295.97
B3LYP/6-311++G(2df,2p)	703.40	91.76 (90.96)	62.45 (60.64)	593.42 (591.61)	331.48 (330.17)
		86.34	57.17	589.19	327.17
B3LYP/aug-cc-pVTZ	704.97	93.25 (92.59)	62.22 (61.81)	596.43 (595.54)	334.86 (334.34)
		87.92	58.25	593.12	331.33
	$\mathrm{HC} \equiv \mathrm{CH} \ldots . . \mathrm{H}^{+}$	$\mathrm{HC} \equiv \mathrm{CH} \ldots . . \mathrm{Li}^{+}$	$\mathrm{HC} \equiv \mathrm{CH} \ldots . . \mathrm{Na}^{+}$	$\mathrm{HC} \equiv \mathrm{CH} . . . \mathrm{Be}^{2+}$	$\mathrm{HC}=\mathrm{CH} \ldots . . \mathrm{Mg}^{2+}$
Mp2(full)/6-311++G** ${ }^{\text {c }}$	652.92 (642.39) ${ }^{\text {a }}$	87.94 (80.26)	55.60 (49.09)	542.79 (530.34)	273.14 (263.69)
Mp2(full)/6-311++G(2df,2p) ${ }^{\text {c }}$	646.95 (641.79) ${ }^{\text {a }}$	87.43 (83.04)	58.42 (53.11)	541.08 (534.22)	280.75 (274.87)
	$619.93{ }^{\text {b }}$	79.53	50.93	531.78	272.83
MP2(full)/aug-cc-pVTZ ${ }^{\text {c }}$	653.11 (643.73)	91.64 (84.49)	63.51 (52.60)	561.41 (535.74)	295.98 (277.32)
	621.98	81.34	50.39	533.78	275.44
B3LYP/6-311++G(2df,2p) ${ }^{\text {c }}$	661.88	91.83 (91.00)	60.88 (59.25)	573.98 (573.20)	308.77 (307.48)
		87.67	57.17	572.76	306.37
B3LYP/aug-cc-pVTZ ${ }^{\text {c }}$	663.53	93.27 (92.62)	60.55 (60.15)	576.82 (575.89)	312.02 (311.51)
		89.37	58.15	575.66	310.61

${ }^{\text {a }}$ The value in parenthesis is basis set superposition error (BSSE)-corrected [$-D_{e(B S S E)}$]
${ }^{\mathrm{b}}$ The binding energy is ΔE with BSSE and zero-point energy [ZPE; $-D_{e(\text { (BSSE-ZPE })}$] correction
${ }^{\text {c }}$ Calculated values from Ref. [1]
cation $-\pi$ interaction in Li^{+}or Be^{2+} complexes might be greater than that in the complex of Na^{+}or Mg^{2+}. In particular, the $\mathrm{H}^{+} \ldots \pi$ distances are considerably smaller than the corresponding distances in other complexes, indicating that the cation $-\pi$ interaction might be greatest in the H^{+}complex.

Binding energies and stabilities

For all the complexes, the proportion of correlated interaction energies to their total binding energies, defined as $\left[\left(-D_{\mathrm{e}}\right)-\left(-D_{\mathrm{e}(\mathrm{BSSE} / Z P E)}\right)\right] /\left(-D_{\mathrm{e}}\right)$, are up to $9.10,23.85$,

Table 3 Selected frequency shifts relative to $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$for the complexes and IR intensities in the complexes at UMP2(full)/aug-cc-pVTZ level ${ }^{\text {a }}$. Stret. Stretching

	$\mathrm{HB}=\mathrm{BH}$		$\mathrm{HB}=\mathrm{BH} \ldots . . \mathrm{H}^{+}$		$\mathrm{HB}=\mathrm{BH} \ldots . . \mathrm{Li}^{+}$		$\mathrm{HB}=\mathrm{BH} \ldots . . \mathrm{Na}^{+}$		$\mathrm{HB}=\mathrm{BH} . . . \mathrm{Be}^{2+}$		$\mathrm{HB}=\mathrm{BH} \ldots . . \mathrm{Mg}^{2+}$		Assignment ${ }^{\text {b }}$
	ν	I	$\Delta \nu$	I									
ν_{1}	1,307	0	-186	2	-33	7	-24	8	-199	49	-121	76	sym. stret. of $B=B$
ν_{2}	2,850	23	39	52	2	0	2	1	-91	151	-31	45	anti-sym. stret. of B-H
ν_{3}	2,917	0	13	0	-7	0	-8	0	-112	0	-45	1	stret. of B-H

${ }^{\text {a }}$ All frequencies $(\nu$ or $\Delta \nu)$ are in cm^{-1} and IR intensities (I) are in $\mathrm{km} \mathrm{mol}^{-1}$
4.06 and 1.01% at (U)MP2(full)/6-311++G(2df,2p), (U) MP2(full)/aug-cc-pVTZ, (U)B3LYP/6-311++G(2df,2p) and (U)B3LYP/aug-cc-pVTZ levels for BSSE corrections, respectively. For the cation $-\pi$ interactions in the complexes of $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right)$, the proportions are up to $5.53,11.93$, 1.87 and 0.44% at MP2(full)/6-311++G(2df,2p), MP2 (full)/aug-cc-pVTZ, B3LYP/6-311++G(2df,2p) and B3LYP/aug-cc-pVTZ levels for BSSE corrections, respec-
tively [1]. These results indicate that, for cation $-\pi$ interaction energies, it is unnecessary to check the BSSE corrections except for the (U)MP2(full)/aug-cc-pVTZ calculation, which is in accordance with most recent investigations [3, 37-40]. As with BSSE corrections, ZPE corrections, which amount to only $5.89,5.20,5.56$ and 5.72% for the above methods, respectively, might also be negligible. Our investigation on the cation $-\pi$ interactions

Table 4 Calculated parameters of the cation $-\pi$ complexes at their equilibrium geometries: natural bond orbital (NBO) occupation numbers, their respective orbital energies ε, the
second-order perturbation energies $E^{(2)}$ and the sums of all atomic NBO charges in their complexes (Q) at (U)MP2(full)/aug-ccpVTZ level

		$\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Li}^{+}$	$\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Na}^{+}$	$\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Be}^{2+}$	$\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots . \mathrm{Mg}^{2+}$
Occ. $(\mathrm{B}=\mathrm{B})^{\text {a }}$		$0.9702 \mathrm{p}^{1.00} \mathrm{p}^{1.00}$	$0.9820 \mathrm{p}^{1.00} \mathrm{p}^{1.00}$	$0.7442 \mathrm{p}^{1.00} \mathrm{p}^{1.00}$	$0.7604 \mathrm{p}^{1.00} \mathrm{p}^{1.00}$
$\varepsilon\{(\mathrm{B}=\mathrm{B})\}^{\mathrm{b}}$		-0.5601	-0.5309	-0.7933	-0.7031
Occ. $\left(\mathrm{M}^{+} / \mathrm{M}^{2+}\right)^{* a}$		$0.0227 \mathrm{sp}^{0.33}$	$0.0156 \mathrm{sp}^{0.17}$	$0.2527 \mathrm{sp}^{0.12}$	$0.2360 \mathrm{sp}^{0.05}$
$\varepsilon\left\{\left(\mathrm{M}^{+} / \mathrm{M}^{2+}\right)^{*}\right\}^{\text {b }}$		0.1805	0.1286	-0.4523	-0.4523
$\left.E_{(\mathrm{B}=\mathrm{B}) \rightarrow(}{ }^{(2)} \mathrm{M}^{+} / \mathrm{M}^{2+}\right)^{\text {c }}$		45.79	28.52	684.13	413.22
$\mathrm{Q}(\mathrm{HB}=\mathrm{BH})^{\text {d }}$		26.5	18.9	342.2	256.8
	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{H}^{+}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Li}^{+}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Na}^{+}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Be}^{2+}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Mg}^{2+}$
Occ. $(\mathrm{C}=\mathrm{C})$	$1.9969 \mathrm{sp}^{1.99} \mathrm{sp}^{1.99}$	$1.9740 \mathrm{p}^{1.00} \mathrm{p}^{1.00}$	$1.9814 \mathrm{p}^{1.00} \mathrm{p}^{1.00}$	$1.6875 \mathrm{p}^{1.00} \mathrm{p}^{1.00}$	$1.8241 \mathrm{p}^{1.00} \mathrm{p}^{1.00}$
$\varepsilon\{(\mathrm{C}=\mathrm{C})\}$	-1.2190	-0.5973	-0.5791	-0.8465	-0.8037
Occ. $\left(\mathrm{M}^{+} / \mathrm{M}^{2+}\right)^{*}$	$0.6853 \mathrm{sp}^{0.00}$	$0.0272 \mathrm{sp}^{0.16}$	$0.0188 \mathrm{sp}^{0.03}$	$0.3141 \mathrm{sp}^{0.15}$	$0.1771 \mathrm{sp}^{0.05}$
$\varepsilon\left\{\left(\mathrm{M}^{+} / \mathrm{M}^{2+}\right)^{*}\right\}$	-0.2489	0.1605	-0.0055	-0.3252	-0.3658
$E^{(2)}(\mathrm{C}=\mathrm{C}) \rightarrow\left(\mathrm{M}^{+} / \mathrm{M}\right) *^{*+}$	94.10	50.48	23.54	785.13	269.24
$\mathrm{Q}\left(\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}\right)$	687.2	28.8	19.4	326.1	180.8
	$\mathrm{HC} \equiv \mathrm{CH} . . . \mathrm{H}^{+}$	$\mathrm{HC} \equiv \mathrm{CH} \ldots . . \mathrm{Li}^{+}$	$\mathrm{HC} \equiv \mathrm{CH} \ldots . . \mathrm{Na}^{+}$	HC $\equiv \mathrm{CH} . . . \mathrm{Be}^{2+}$	$\mathrm{HC} \equiv \mathrm{CH} . . . \mathrm{Mg}^{2+}$
Occ. (C $=\mathrm{C}$)	$1.9935 \mathrm{sp}^{1.23} \mathrm{sp}^{1.23}$	$1.9843 \mathrm{p}^{1.00} \mathrm{p}^{1.00}$	$1.9909 \mathrm{p}^{1.00} \mathrm{p}^{1.00}$	$1.8361 \mathrm{p}^{1.00} \mathrm{p}^{1.00}$	$1.9014 \mathrm{p}^{1.00} \mathrm{p}^{1.00}$
$\varepsilon\{(\mathrm{C} \equiv \mathrm{C})\}$	-1.3982	-0.6680	-0.6147	-0.9720	-0.8751
Occ. $\left(\mathrm{M}^{+} / \mathrm{M}^{2+}\right)^{*}$	$0.6306 \mathrm{sp}^{0.00}$	$0.0147 \mathrm{sp}^{0.50}$	$0.0079 \mathrm{sp}^{0.11}$	$0.1678 \mathrm{sp}^{0.19}$	$0.1009 \mathrm{sp}^{0.09}$
$\varepsilon\left\{\left(\mathrm{M}^{+} / \mathrm{M}^{2+}\right)^{*}\right\}$	-0.2434	0.3388	0.1443	-0.2156	-0.3291
	95.22	36.13	13.01	439.65	161.43
$\mathrm{Q}(\mathrm{HC} \equiv \mathrm{CH})$	663.0	18.7	9.4	196.1	109.8

[^1]Table 5 The selected bond critical point properties (in a.u.) at (U)MP2(full)/aug-cc-PVTZ level

$\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$	$\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{H}^{+}$	$\mathrm{HB}=\mathrm{BH}\left(\Sigma^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Li}^{+}$	$\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Na}^{+}$	$\begin{aligned} & \mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \\ & \mathrm{Be}^{2+} \end{aligned}$	$\begin{aligned} & \mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \\ & \mathrm{Mg}^{2+} \end{aligned}$
	0.1587	0.0143	0.0100	0.0597	0.0283
	-0.1386	0.0507	0.0375	0.0646	0.0528
0.2057		0.2018	0.2033	0.1806	0.1955
-0.4393		-0.4460	-0.4471	-0.4411	-0.4871
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{H}^{+}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Li}^{+}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Na}^{+}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots . \mathrm{Be}^{2+}$	$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Mg}^{2+}$
	0.1980	0.0220	0.0155	0.0739	0.0405
	-0.3000	0.0999	0.0750	0.1144	0.1411
0.3697	0.3382	0.3628	0.3646	0.3435	0.3517
-1.4250	-1.2253	-1.3812	-1.3931	-1.2845	-1.3315
$\mathrm{HC} \equiv \mathrm{CH}$	$\mathrm{HC} \equiv \mathrm{CH} \ldots . . \mathrm{H}^{+}$	$\mathrm{HC} \equiv \mathrm{CH} . . . \mathrm{Li}^{+}$	$\mathrm{HC} \equiv \mathrm{CH} \ldots . . \mathrm{Na}^{+}$	$\mathrm{HC} \equiv \mathrm{CH} . . . \mathrm{Be}^{2+}$	$\mathrm{HC}=\mathrm{CH} \ldots . . \mathrm{Mg}^{2+}$
	0.2155	0.0229	0.0152	0.0780	0.0409
	-0.3755	0.1176	0.0810	0.2172	0.1740
0.4185	0.4169	0.4194	0.4195	0.4201	0.4216
-1.0871	-1.3483	-1.1734	-1.1577	-1.4315	-1.3460

between $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right)$ and cations also indicated that ZPE corrections amounted to only $2.77,2.67,2.52$ and 2.44% for the above methods, respectively [1].

As can be seen from Table 2, the binding energies obtained from (U)MP2(full) and (U)B3LYP methods at 6$311++G(2 d f, 2 p)$ and aug-cc-pVTZ levels all follow the same order of $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{H}^{+}>\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Be}^{2+}>\mathrm{HB}=\mathrm{H}$ $\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Mg}^{2+} \gg \mathrm{HB}=\mathrm{BH} \quad\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Li}^{+}>\mathrm{HB}=\mathrm{BH} \quad\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Na}^{+}$, which is also in good agreement with the analyses of the geometries, and similar to our investigation on the cation $-\pi$ interaction between $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right)$ and cation $\left(\mathrm{H}^{+}, \mathrm{Li}^{+}, \mathrm{Na}^{+}\right.$, Be^{2+} or Mg^{2+}) [1].

Mohajeri and Karimi have also studied the cation $-\pi$ interaction energy of the $\mathrm{C}_{2} \mathrm{H}_{2} / \mathrm{C}_{2} \mathrm{H}_{4} \ldots \mathrm{M}^{+}\left(\mathrm{M}^{+}=\mathrm{H}^{+}, \mathrm{Li}^{+}\right.$and Na^{+}) complex; interaction energy was evaluated to be 642.86, 72.26 and $48.97 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for $\mathrm{C}_{2} \mathrm{H}_{2} \ldots \mathrm{M}^{+}$and 694.21, 82.22 and $51.31 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for $\mathrm{C}_{2} \mathrm{H}_{4} \ldots \mathrm{M}^{+}$after correction for BSSE at MP2/6-311++G** level, respectively [16]. From Table 1, the cation- π interaction energies of the $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{M}^{+}$complexes are $852.87,111.78$ and $74.64 \mathrm{~kJ} \mathrm{~mol}^{-1}$ after BSSE, higher than those of the $\mathrm{C}_{2} \mathrm{H}_{2} / \mathrm{C}_{2} \mathrm{H}_{4} \ldots \mathrm{M}^{+}$complexes. For comparison, we also obtained corresponding values (after BSSE) of 617.01, 48.51 and $27.67 \mathrm{~kJ} \mathrm{~mol}^{-1}$ by employing the UMP2(full)/6$311++\mathrm{G}^{* *}$ method for the $\mathrm{B}_{2} \mathrm{H}_{2} \ldots \mathrm{M}^{+}$complexes. Comparing these results, it can be seen that the cation $-\pi$ interaction energy of $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{M}^{+}$is weaker than that of the $\mathrm{C}_{2} \mathrm{H}_{2} \ldots \mathrm{M}^{+}, \mathrm{C}_{2} \mathrm{H}_{4} \ldots \mathrm{M}^{+}$or $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{M}^{+}$complex. For the M^{2+} complexes, the cation $-\pi$ interactions of $\mathrm{B}_{2} \mathrm{H}_{2}$ $\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{M}^{2+}$ are also poorer than those of the $\mathrm{C}_{2} \mathrm{H}_{2} / \mathrm{C}_{2} \mathrm{H}_{4} \ldots$ M^{2+} or $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{M}^{+}$. As can be seen from Table 2, at all levels, the binding energies follow the order $\mathrm{HB}=\mathrm{BH}$ $\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}>\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}>\mathrm{HC} \equiv \mathrm{CH} \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}>$
$\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$. For example, the cation $-\pi$ interaction is $706.13,556.94$ or $533.78 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for $\mathrm{HB}=\mathrm{BH}$ $\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Be}^{2+}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Be}^{2+}$ or $\mathrm{HC} \equiv \mathrm{CH} \ldots \mathrm{Be}^{2+}$, whereas it is only $493.40 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Be}^{2+}$ at (U)MP2 (full)/aug-cc-pVTZ. So $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$can be viewed as a poorer π-electron donor in the cation- π interaction compared to CC multiple-bond compounds, while $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right)$ is a stronger π-electron donor than CC multiple-bond monomers.

Vibration frequencies

The larger the frequency shifts, the more stable the complex is; thus, we showed some important frequency shifts in order to investigate the relative stabilities of the complexes. The most important vibrational frequency of π-electron donor, ν_{1}, can be described as stretching of the $\mathrm{B}=\mathrm{B}$ bond. From Table 3 it can be seen that the ν_{1} decreased (red shifts) and the IR intensity increased greatly in complexes compared to values obtained with the monomer $\mathrm{HB}=\mathrm{BH}$ $\left({ }^{3} \Sigma_{g}^{-}\right)$, showing the formation of the cation $-\pi$ interaction. Except for $\mathrm{HB}=\mathrm{BH} \ldots \mathrm{H}^{+}$, the complex $\mathrm{HB}=\mathrm{BH} \ldots \mathrm{Be}^{2+}$ is the most stable since it has the largest frequency shift $\left(-199 \mathrm{~cm}^{-1}\right)$, while $\mathrm{HB}=\mathrm{BH} . . . \mathrm{Na}^{+}$is the most unstable with the smallest frequency shift (only $-24 \mathrm{~cm}^{-1}$), as is consistent with the analyses of geometries and binding energies.

The terms ν_{2} and ν_{3} can be approximately described as the anti-symmetrical stretching and symmetrical stretching frequencies of the $\mathrm{B}-\mathrm{H}$ bond, respectively. From Table 3, although ν_{2} decreased (red shifts) in the Be^{2+} and Mg^{2+} complexes and increased (blue shifts) in the other complexes, the frequencies changed most in $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$... Be^{2+} and least in $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Na}^{+}$. For ν_{3}, the largest

Fig. 2 The plot of binding energies versus $\rho B C P($ cation... π)

(b) The plot of binding energies versus $\rho_{\mathrm{BCP}(\text { cation ...x) }}$ for the $\mathrm{HB}=\mathrm{BH}$ complexes
shift was also found in $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Be}^{2+}$. These results show that the cation $-\pi$ interaction in $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Be}^{2+}$ is the strongest, except for the H^{+}complex, whereas it is weakest in $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Na}^{+}$, which is in accordance with the above analyses.

NBO analysis

To clarify the nature of the complexation, NBO analysis was carried out. From Table 4, we can see that, for the boron and carbon atoms, the NBO approach yields mainly

Fig. 3 Shifts of electron density as a result of formation of the complex between cation and $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$(cutaway view). Purple regions denote gain, and yellow regions represent loss

only one kind of hybridization that involves the formation of cation $-\pi$ interactions. This hybridization is almost purely p (except for $\mathrm{sp}^{1.99}$ and $\mathrm{sp}^{1.23}$ in $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{H}^{+}$and $\mathrm{HC} \equiv \mathrm{CH} .$. H^{+}, respectively) in character and is perpendicular to the molecular axis including the $\mathrm{B}=\mathrm{B}$ or CC multiple bond to form the π-orbitals.

According to NBO analysis, all the complexes have two units, which is in agreement with the character of most interaction systems. In this study, delocalization effects between these two units can be identified from the presence of off-diagonal elements of the Fock matrix in the NBO basis, and the strengths of these delocalization interactions, $E^{(2)}$ [42], can be estimated by second-order perturbation theory. From the results of $E^{(2)}$, we can see that the major interaction (except for the H^{+}complex) is that the $\mathrm{B}=\mathrm{B}$ or CC multiple bond offers the $\mathrm{p}^{1.00}$-hybridization π-electrons of the boron or carbon atoms to the contacting n * antibonding orbital of the cation. Thus, the cation $-\pi$ interactions in these complexes are confirmed.

As can be seen from Table 4, for the HB=BH $\left({ }^{3} \Sigma_{g}^{-}\right)$ complexes of $\mathrm{Be}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Li}^{+}$and Na^{+}, the delocalization interactions $E^{(2)}\left(\pi_{\mathrm{B}=\mathrm{B}} \rightarrow \mathrm{n}^{*}\right.$ cation $)$ have stabilized the systems by $684.13,413.22,45.79$ and $28.52 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. Since the $E^{(2)}$ values follow the order $\mathrm{HB}=\mathrm{BH} \ldots \mathrm{Be}^{2+}>\mathrm{HB}=\mathrm{BH} \ldots \mathrm{Mg}^{2+}>\mathrm{HB}=\mathrm{BH} \ldots \mathrm{Li}^{+}>\mathrm{HB}=\mathrm{BH} \ldots$ Na^{+}, the orders of the binding energy and stability are found to be $\mathrm{HB}=\mathrm{BH} \ldots \mathrm{Be}^{2+}>\mathrm{HB}=\mathrm{BH} . . . \mathrm{Mg}^{2+}>\mathrm{HB}=\mathrm{BH} \ldots$ $\mathrm{Li}^{+}>\mathrm{HB}=\mathrm{BH} \ldots \mathrm{Na}^{+}$. On the other hand, the net charge transfer is evaluated to be from $\mathrm{HB}=\mathrm{BH}$ to the cation by $342.2,256.8,26.5$ and 18.9 me for the $\mathrm{Be}^{2+}, \mathrm{Mg}^{2+}, \mathrm{Li}^{+}$and Na^{+}complexes, respectively. This indicates that the smaller cation with the greater charge allows the cation to more effectively withdraw electron density from the π-system, increasing the charge transfer and the covalent nature of the cation $-\pi$ interaction. Thus, the order of the binding energies is also suggested to be $\mathrm{HB}=\mathrm{BH} . . . \mathrm{Be}^{2+}>\mathrm{HB}=\mathrm{BH} . .$. $\mathrm{Mg}^{2+}>\mathrm{HB}=\mathrm{BH} . . . \mathrm{Li}^{+}>\mathrm{HB}=\mathrm{BH} \ldots \mathrm{Na}^{+}$. This result is in accordance with the geometries and analyses of the binding energies as well as our investigation into the cation $-\pi$ interaction between the singlet state $\mathrm{HB}=\mathrm{BH}$ and the cation [1].

In $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$ and $\mathrm{HC} \equiv \mathrm{CH} \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$, we also noted the fact that the values of $E^{(2)}$ in the Be^{2+} and Mg^{2+} complexes are significantly greater than those in the Li^{+} and Na^{+}complexes, suggesting that the cation $-\pi$ interactions in $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{M}^{2+}$ and $\mathrm{HC} \equiv \mathrm{CH} \ldots \mathrm{M}^{2+}$ are greater. Furthermore, the net charge transfer is evaluated to be from the CC multiple bonds to the cation by $326.1,180.8,28.8$ and 19.4 me for $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Be}^{2+}, \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Mg}^{2+}$, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Li}^{+}$and $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{Na}^{+}$, and 196.1, 109.8, 18.7 and 9.4 me for the corresponding $\mathrm{HC} \equiv \mathrm{CH}$ complexes, respectively, indicating that the net charge transfer in the M^{2+} complexes is also stronger. In other words, the $\mathrm{B}=\mathrm{B}$ or CC multiple bond can release more π-electrons toward M^{2+}
than towards M^{+}. This is perhaps the origin of the stronger interaction in M^{2+} complexes than those in M^{+}complexes.

It is noteworthy that, although the values of $E^{(2)}$ in the H^{+}complexes are weaker than those in the other complexes, perhaps due to the poorer electron-delocalization of $\mathrm{sp}^{1.99}$ and $\mathrm{sp}^{1.23}$ than with purely p hybridization to the cation, significantly greater net charge transfers are found in the H^{+}complexes (687.2 and 663.0 me) compared to those in other complexes. Such a remarkable net charge transfer suggests covalent interactions in the H^{+}complexes, as is also observed in most of cation $-\pi$ systems of $\mathrm{H}^{+}[1,16]$.

AIM analysis

It is well known that knowledge of electronic characteristics is essential to revealing the nature of cation $-\pi$ interactions. As an advanced method, Bader's AIM method has been applied widely to study cation $-\pi$ interactions [44].

Our calculated AIM results show that, for each $\mathrm{M}^{+} / \mathrm{M}^{2+} \ldots \pi$ contact, there is a bond path linking the cation with the midpoint of the $\mathrm{B}=\mathrm{B}$ or CC multiple bond accompanied by a BCP (see Fig. 1). Except for the H^{+}complex, the values of the electron densities $\rho_{\mathrm{BCP}(\mathrm{H} \cdots \pi)}$ obtained are within a range of $0.0100-0.0739$ a.u. (see Table 5), and their Laplacian $\nabla^{2} \rho_{\mathrm{BCP}}$ values are all positive, indicating the typical closedshell type of interaction in the complexes. In other words, for these $\mathrm{M}^{+} / \mathrm{M}^{2+} \ldots \pi$ contacts, the small ρ_{BCP} and positive $\nabla^{2} \rho_{\mathrm{BCP}}$ values are basically similar to the topological properties of normal $\mathrm{M}^{+} / \mathrm{M}^{2+} \ldots \pi$ bonds [44]. This result suggests the formation of cation $-\pi$ interactions and confirms that, akin to the CC multiple bond, the electron-deficient $\mathrm{B}=\mathrm{B}$ double bond of $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$can also act as a π electron donors to form cation $-\pi$ interactions.

In contrast, at the BCP of the H^{+}complex, the higher densities [$0.1587,0.1980$ and 0.2155 a.u. for the $\mathrm{HB}=\mathrm{BH}$ $\left({ }^{3} \Sigma_{g}^{-}\right), \mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ and $\mathrm{HC} \equiv \mathrm{CH}$, respectively] and negative Laplacian values ($-0.1386,-0.3000$ and -0.3755) are indicative of covalent interaction, in accordance with our studies on the complex of the singlet state $\mathrm{HB}=\mathrm{BH}$ with H^{+}[1]. In fact, in their investigation into H^{+}complexes with $\pi-$ systems, Mohajeri and Karimi found that the densities are $0.19-0.27$ a.u. at the BCP of complexes, and confirmed that negative Laplacian density values are indicative of covalent interaction [16].

From Tables 2 and 5, except for the H^{+}complex, the Be^{2+} complex has the highest electron density $\rho_{\mathrm{BCP}(\text { cation } \cdots \pi)}$, with the greatest binding energies in each kind of complex; in contrast, the Na^{+}with $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$or CC multiple-bond system has the least $\rho_{\mathrm{BCP}(\text { cation } \cdots \pi)}$ with the poorest binding energy. Interestingly, a good linear relationship is observed between the binding energies and the electron densities $\rho_{\mathrm{BCP}(\text { cation } \cdots \pi)}$, and the correlation coefficient, R^{2}, is equal to 0.9652 and 0.9663 for all the complexes at MP2(full)/6-
$311++\mathrm{G}(2 \mathrm{df}, 2 \mathrm{p})$ and MP2(full)/aug-cc-PVTZ levels, respectively (see Fig. 2). For $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$complexes with cations, it is up to 0.9845 and 0.9843 , respectively.

Additionally, the poorer cation $-\pi$ interactions in $\mathrm{HB}=\mathrm{BH}$ $\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$ complexes compared to those in the $\mathrm{H}_{2} \stackrel{\rightharpoonup}{\mathrm{C}}=\mathrm{CH}_{2}$ or $\mathrm{HC} \equiv \mathrm{CH}$ complexes are also observed from the lower $\rho_{\mathrm{BCPs}(\text { cation } \cdots \pi)}$ in the former compared to those in the latter. For example, the values of $\rho_{\mathrm{BCPs}(\text { cation } \cdots \pi)}$ are 0.0739 and 0.0780 a.u. for the Be^{2+} complexes with $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$ and $\mathrm{HC} \equiv \mathrm{CH}$, respectively, but only up to 0.0597 a.u. for $\mathrm{HB}=\mathrm{BH} . . . \mathrm{Be}^{2+}$.

Analysis of the electron density shifts
It is known that changes in the electron density distribution in both donors and acceptors are the most important consequence of the formation of the cation $-\pi$ interaction [48]. In order to obtain a deeper insight into the origin of the cation $-\pi$ interaction between the electron-deficient $\mathrm{B}=\mathrm{B}$ bond of $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$and the cation, an analysis of the electron density shifts that accompany formation of the cation $-\pi$ interaction was carried out. The shifts of electron densities are illustrated in Fig. 3. Purple regions represent the accumulation of additional electron density as a result of the mutual approach of the two molecules; yellow regions indicate loss of density.

From Fig. 3, the most obvious effect of the cation $-\pi$ interaction is shown by the purple regions near the cation,
showing that the cation gains density. It can be noted that, for the H^{+}complex, the proton falls into the bottom of the purple region near the boron atoms, while for the other complexes cations are in the middle (for the Be^{2+} and Mg^{2+} complexes) or top (for the Li^{+}and Na^{+}complexes) of the purple region. This result shows that, for the H^{+}complex, the lost density of the $\mathrm{B}=\mathrm{B}$ bonds has been concentrated in the internuclear region (valence region) between the proton and the two boron atoms, and the valence shell charge concentration of the two species forms one continuous region of charge concentration. Thus, a shared interaction in the H^{+}complex is confirmed, in accordance with the binding energies and investigation into the cation $-\pi$ interaction between H^{+}and $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}, \mathrm{HC} \equiv \mathrm{CH}$ or $\mathrm{HB}=\mathrm{BH}$ $\left({ }^{1} \Delta_{\mathrm{g}}\right)[1,16]$. For the Be^{2+} or Mg^{2+} complex, the valence shell charge concentration is less than that in the H^{+} complex, suggesting that the poorer covalent properties of the cation $-\pi$ interaction in the Be^{2+} or Mg^{2+} complexes compared to that in the H^{+}complex with the π system. However, in the Li^{+}and Na^{+}complexes, the lost densities of the $\mathrm{B}=\mathrm{B}$ bonds are concentrated in the middle of the regions between the cations and boron atoms, and the electron densities are confined separately to each interacting species, reflecting the closed-shell interaction.

Another effect is seen in the region along the $\mathrm{B}=\mathrm{B}$ bond. For each of the cation $-\pi$ complexes, it is apparent from the notable yellow region around the $\mathrm{B}=\mathrm{B}$ bond axis that there is much charge loss from the $\mathrm{B}=\mathrm{B}$ bond, in accordance with

Fig. 4 Molecular structures and BCPs of the cation $-\pi$ complexes $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right.$? $) /\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$, $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$ and $\mathrm{HC} \equiv \mathrm{CH} . . . \mathrm{M}^{+} / \mathrm{M}^{2+}$. Small red spheres (unlabeled) represent bonds

Table 6 Principal geometry parameters (in \AA) and bond critical point (BCP) properties (in a.u.) for the σ-binding 1:1 and 2:1 complexes between BH and the cations at B3LYP/6-311++G(2df,2p) level

	$\mathrm{HB} \ldots \mathrm{H}^{+}$	$\mathrm{HB} \ldots \mathrm{Li}^{+}$	$\mathrm{HB} \ldots \mathrm{Na}^{+}$	$\mathrm{HB} \ldots \mathrm{Be}^{2+}$	$\mathrm{HB}^{2+} \mathrm{Mg}^{2+}$
$\mathrm{R}\left(\mathrm{M}^{+} / \mathrm{M}^{2+} \ldots \mathrm{B}\right)$	1.173	2.286	2.645	1.964	2.369
$\rho_{\mathrm{BCP}}\left(\mathrm{M}^{+} / \mathrm{M}^{2+} \ldots \mathrm{B}\right)$	0.2269	0.0262	0.0196	0.0797	0.0424
$\nabla^{2} \rho_{\mathrm{BCP}}\left(\mathrm{M}^{+} / \mathrm{M}^{2+} \ldots \mathrm{B}\right)$	-0.9165	0.0892	0.0684	0.0342	0.1000
	$\mathrm{HBH}^{+} \ldots \mathrm{BH}$	$\mathrm{HBLi}^{+} \ldots \mathrm{BH}$	$\mathrm{HBNa}{ }^{+} \ldots \mathrm{BH}$	$\mathrm{HBBe}^{2+} \ldots \mathrm{BH}$	$\mathrm{HBMg}^{2+} \ldots \mathrm{BH}$
$\mathrm{R}\left(\mathrm{M}^{+} / \mathrm{M}^{2+} \ldots \mathrm{B}\right)$	$2.248(1.225)^{\mathrm{a}}$	2.316	2.680	1.959	2.386
$\rho_{\mathrm{BCP}}\left(\mathrm{M}^{+} / \mathrm{M}^{2+} \ldots \mathrm{B}\right)$	$0.0262(0.2104)^{\mathrm{a}}$	0.0241	0.0181	0.0765	0.0400
$\nabla^{2} \rho_{\mathrm{BCP}}\left(\mathrm{M}^{+} / \mathrm{M}^{2+} \ldots \mathrm{B}\right)$	$0.0323(-0.7744)^{\mathrm{a}}$	0.0803	0.0631	0.0283	0.1016

${ }^{\text {a }}$ Values in parentheses are the distance and BCP properties of $\mathrm{H}^{+} \ldots \mathrm{B}$ bond in HBH^{+}moiety
the accepted notion that, due to the relative stronger fluidity of π-electrons, the π-orbital of $\mathrm{B}=\mathrm{B}$ bond tends to lose density. Thus, it is confirmed that the electron-deficient $\mathrm{B}=\mathrm{B}$ double bond of $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$can also act as a π electron donor to form cation $-\pi$ interactions. The loss of density weakens the $\mathrm{B}=\mathrm{B}$ bond, leading to its elongation and a decrease in strength, in agreement with geometrical analysis. Moreover, the yellow region in the Na^{+}complex is the smallest, indicating that the charge loss of the $\mathrm{B}=\mathrm{B}$ bond in the Na^{+}complex is the least, with the poorest cation $-\pi$ interaction, in agreement with the above analyses.

Therefore, we can conclude that the nature of the cation $-\pi$ interaction is that many of the lost densities from the π-orbital of the $\mathrm{B}=\mathrm{B}$ bond are shifted toward the cations, leading to accumulation of electron density and the formation of the cation $-\pi$ interaction. Furthermore, it is obvious from the electron density shifts that the H^{+} complex is indicative of covalent interaction, and the Be^{2+} or Mg^{2+} complexes have poorer covalent properties of cation $-\pi$ interaction than that of the H^{+}complex.

A comparison with the σ-binding complex

Geometry of the complex

The atomic labels and BCPs of the σ-binding $1: 1$ and $2: 1$ complexes between BH and the cations are shown in Fig. 4, and the geometry parameters and binding energies are listed in Tables 6 and 7, respectively. Except for HB... H^{+}($D_{\infty h}$), the $1: 1$ complexes are of $C_{\infty \text { ov }}$ symmetry. In the $2: 1$ complexes, $\mathrm{HBM}^{+} / \mathrm{M}^{2+} \ldots \mathrm{BH}, \mathrm{HBH}^{+} \ldots \mathrm{BH}$ has $C_{\infty \mathrm{v}}$ symmetry, while the others form $D_{\infty h}$ shapes.

As can be seen from Table 6, the distances of the $\mathrm{M}^{+} / \mathrm{M}^{2+} \ldots$ B bonds in the σ-binding $\mathrm{Li}^{+}, \mathrm{Na}^{+}$and Mg^{2+} complexes are less than those of the $\mathrm{M}^{+} / \mathrm{M}^{2+} \ldots \pi$ bonds in the corresponding cation $-\pi$ complexes. For example, the distances of Li^{+}...B bonds in $\mathrm{HB} \ldots \mathrm{Li}^{+}$and $\mathrm{HBLi}^{+} \ldots \mathrm{BH}$ are 2.286 and $2.316 \AA$, whereas the corresponding values of the $\mathrm{Li}^{+} \ldots \pi$ bonds in $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Li}^{+}$and $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Li}^{+}$are 2.475 and $2.486 \AA$ at (U) B3LYP/6-311++G(2df,2p) level, respectively. For the σ-binding Be^{2+} complexes, the distances of the $\mathrm{Be}^{2+} \ldots$

Table 7 Binding energies of the σ-binding $1: 1$ and $2: 1$ complexes between BH and the cations at B3LYP/6-311++G(2df,2p) level $\left[-D_{e}\left(\mathrm{~kJ} \mathrm{~mol}^{-1}\right)\right]$

$\mathrm{HB} \ldots \mathrm{H}^{+}$	$\mathrm{HB} \ldots \mathrm{Li}^{+}$	$\mathrm{HB} \ldots \mathrm{Na}^{+}$	$\mathrm{HB} \ldots \mathrm{Be}^{2+}$	$\mathrm{HB}^{+} . . \mathrm{Mg}^{2+}$
$894.03^{\mathrm{a}} 862.51^{\mathrm{c}}$	$152.40^{\mathrm{a}}(151.63)^{\mathrm{b}} 140.42^{\mathrm{c}}$	$112.00(110.17) 100.79$	$703.81(703.17) 688.83$	$427.51(426.16) 414.01$
$\mathrm{HBH}^{+} \ldots \mathrm{BH}$	$\mathrm{HBLi} \ldots \mathrm{BH}$	$\mathrm{HBNa} \ldots \mathrm{BH}$	$\mathrm{HBBe}^{2+} \ldots \mathrm{BH}$	$\mathrm{HBMg}^{2+} \ldots \mathrm{BH}$
$-50.96203^{\mathrm{d}}-51.02393^{\mathrm{e}}$	$-57.98697-58.09420$	$-212.76260-212.88947$	$-64.71640-64.64264$	$-250.12630-250.13691$
-51.07831^{f}	-58.08541	-212.87577	-64.69116	-250.16835
$69.26(68.08) 51.00$	$126.24(124.92) 100.30$	$94.94(92.65) 70.05$	$525.74(524.60) 493.90$	$333.83(331.89) 304.68$

[^2]B bonds in the $1: 1$ and $2: 1$ complexes are larger than that of the $\mathrm{Be}^{2+} \ldots \pi$ bond in $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Be}^{2+}$ but lower than that in $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Be}^{2+}$.

It is noteworthy that, in the σ-binding $\mathrm{HBH}^{+} \ldots \mathrm{BH}\left(C_{\infty \mathrm{ov}}\right)$ complex, the distances of $\mathrm{H}^{+} \ldots \mathrm{B}$ bonds are 1.225 and 2.248 \AA, respectively. For both of the $\mathrm{H}^{+} \ldots \mathrm{B}$ bonds, one is close to those of $\mathrm{H}^{+} \ldots \pi$ bonds in the cation $-\pi$ complexes $\mathrm{HB}=\mathrm{BH} \ldots \mathrm{H}^{+}$, and such a short $\mathrm{H}^{+} \ldots \mathrm{B}$ bond indicates that one of the σ-binding $\mathrm{H}^{+} \ldots \mathrm{B}$ interactions in $\mathrm{HBH}^{+} \ldots \mathrm{BH}$ behaves covalently. However, the length of the other σ binding $\mathrm{H}^{+} \ldots \mathrm{B}$ bond in $\mathrm{HBH}^{+} \ldots \mathrm{BH}$ is much greater than that of the covalent character $\mathrm{H}^{+} \ldots \mathrm{B}$ or $\mathrm{H}^{+} \ldots \pi$ bond in $\mathrm{HB}=\mathrm{BH} \ldots \mathrm{H}^{+}$, suggesting a weak interaction, in agreement with our AIM analyses of $\mathrm{HBH}^{+} \ldots \mathrm{BH}$. For $\mathrm{HBH}^{+} \ldots \mathrm{BH}$, one of the values of the Laplacians $\nabla^{2} \rho_{\mathrm{BCP}(\mathrm{H} \cdots \mathrm{B})}$ is positive (0.0323), while the other is negative $(-0.7744$; see Table 6$)$.

Binding energies and stabilities

From Table 7, the σ-binding energies obtained from B3LYP/6-311++G(2df,2p) level follow the same order of $\mathrm{HB} \ldots \mathrm{H}^{+}>\mathrm{HB} \ldots \mathrm{Be}^{2+}>\mathrm{HB} \ldots \mathrm{Mg}^{2+} \gg \mathrm{HB} . . . \mathrm{Li}^{+}>\mathrm{HB} \ldots \mathrm{Na}^{+}$, as is similar to the sequence of the cation- π interactions between $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right)$ or $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$and cations. However, except for $\mathrm{HB} . . . \mathrm{H}^{+}$, the σ-binding interaction energy of $\mathrm{HB} . . . \mathrm{M}^{+} / \mathrm{M}^{2+}$ is always markedly stronger than the cation $-\pi$ interaction energy of the $\mathrm{C}_{2} \mathrm{H}_{2} \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}, \mathrm{C}_{2} \mathrm{H}_{4} \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$, $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$ or $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$ complexes. For example, the interaction energy has been evaluated to be $151.63 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for $\mathrm{HB} . . . \mathrm{Li}^{+}$after correction of the BSSE at B3LYP/6-311++G(2df,2p) level, while it is only 91.00, $90.96,119.55$ and $56.33 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for $\mathrm{C}_{2} \mathrm{H}_{2} \ldots \mathrm{Li}^{+}, \mathrm{C}_{2} \mathrm{H}_{4} \ldots \mathrm{Li}^{+}$, $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Li}^{+}$and $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Li}^{+}$, respectively.

We also calculated the total energies of 2 BH $\left(-50.59700\right.$ a.u.), $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{1} \Delta_{\mathrm{g}}\right)(-50.75465$ a.u. $)$ and $\mathrm{B}_{2} \mathrm{H}_{2}$ $\left({ }^{3} \Sigma_{g}^{-}\right)(-50.78754$ a.u.) with the B3LYP/6-311++G(2df,2p) method. It was found that 2 BH is less stable than $\mathrm{B}_{2} \mathrm{H}_{2}$ $\left({ }^{1} \Delta_{\mathrm{g}}\right)$ and $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{3} \Sigma_{g}^{-}\right)$by 413.85 and $500.19 \mathrm{~kJ} \mathrm{~mol}^{-1}$, respectively. From Table 7 we have also observed that, except for $\mathrm{HBBe}^{2+} \ldots \mathrm{BH}$, the $2: 1 \quad \sigma$-binding complexes between BH and the cations are also less stable than the cation $-\pi$ complexes of $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{1} \Delta_{\mathrm{g}}\right)$ or $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{3} \Sigma_{g}^{-}\right)$. For instance, the σ-binding $\mathrm{HBLi}^{+} \ldots \mathrm{BH}$ complex is higher in energy by $281.49 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Li}$ and $258.41 \mathrm{~kJ} \mathrm{~mol}^{-1}$ for $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Li}$ at B3LYP $/ 6-311++\mathrm{G}$ (2df,2p) level, respectively.

For the $2: 1$ complexes, we defined the second σ-binding energies as follows:
$D_{e}=E_{\text {complex }}-E_{\left(\mathrm{HBM}^{+} / \mathrm{M}^{2+}\right) \text { mono. }}-E_{(\mathrm{BH}) \text { mono }}$.
As can be seen from Tables 2 and 7, the σ-binding interaction energy of $\mathrm{HBLi}^{+} / \mathrm{Na} . . . \mathrm{BH}$ is stronger than the
corresponding cation $-\pi$ interaction in the $\mathrm{C}_{2} \mathrm{H}_{2}, \mathrm{C}_{2} \mathrm{H}_{4}$, $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{1} \Delta_{\mathrm{g}}\right)$ or $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{3} \Sigma_{g}^{-}\right)$complexes. However, the interaction energy of HBBe^{2+}... BH is less than that of $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Be}^{2+}$ and $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Be}^{2+}$, and weaker for $\mathrm{HBMg}^{2+} \ldots \mathrm{BH}$ than for $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{Mg}^{2+}$ but greater than that of $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{Mg}^{2+}$. In particular, we have found that the second σ-binding interaction energy of $\mathrm{HBH}^{+} \ldots \mathrm{BH}$ is only $69.26 \mathrm{~kJ} \mathrm{~mol}^{-1}$, obviously lower than the corresponding cation $-\pi$ interaction energy in the complex of the $\mathrm{C}_{2} \mathrm{H}_{2}$, $\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{~B}_{2} \mathrm{H}_{2}\left({ }^{1} \Delta_{\mathrm{g}}\right)$ or $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{3} \Sigma_{g}^{-}\right)$, indicating that it is not covalent binding but a weak interaction, in agreement with the structures and AIM analyses.

Conclusions

We performed calculations using UMP2(full) and UB3LYP methods at $6-311++G(2 d f, 2 p)$ and aug-cc-pVTZ levels for the triplet state $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$with $\mathrm{H}^{+}, \mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{Be}^{2+}$ and Mg^{2+} systems. The nature of the unusual cation $-\pi$ interaction involving the electron-deficient $\mathrm{B}=\mathrm{B}$ double bond was investigated. The interaction energies follow the order $\mathrm{HB}=\mathrm{BH} \ldots \mathrm{H}^{+}>\mathrm{HB}=\mathrm{BH} \ldots \mathrm{Be}^{2+}>\mathrm{HB}=\mathrm{BH} \ldots \mathrm{Mg}^{2+} \gg \mathrm{HB}=\mathrm{BH} \ldots$ $\mathrm{Li}^{+}>\mathrm{HB}=\mathrm{BH} . . . \mathrm{Na}^{+}$. Furthermore, the calculations show that the interaction energy of $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$ is poorer than that between the corresponding cation and $\mathrm{HB}=\mathrm{BH}$ $\left({ }^{1} \Delta_{\mathrm{g}}\right), \mathrm{HC} \equiv \mathrm{CH}$ or $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}$, and, except for $\mathrm{HB} \ldots \mathrm{H}^{+}$, the σ-binding interaction energy of $\mathrm{HB} \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$ is always markedly stronger than the cation $-\pi$ interaction energy of the $\mathrm{C}_{2} \mathrm{H}_{2} \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}, \mathrm{C}_{2} \mathrm{H}_{4} \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}, \mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$ or $\mathrm{B}_{2} \mathrm{H}_{2}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$ complexes. For the $2: 1$ complex $\mathrm{HBH}^{+} \ldots \mathrm{BH}$, one of the $\mathrm{H}^{+} \ldots \mathrm{B}$ interactions indicates covalent character; the other indicates a weak interaction. The NBO, AIM theory and electron density shift analyses reveal that the nature of the cation $-\pi$ interaction between $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right)$and $\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{Be}^{2+}$ or Mg^{2+} is that much of the density lost from the π-orbital of the $\mathrm{B}=\mathrm{B}$ bond is shifted towards the cation. It is obvious from the electron density shifts that the H^{+}complex is indicative of covalent interaction, and that the cation $-\pi$ interaction the Be^{2+} or Mg^{2+} complex has poorer covalent properties than that in the H^{+}complex.

References

1. Wu Y, Ren F, Li B (2009) THEOCHEM. In press. doi:10.1016/j. theochem.2009.05.029
2. Watt M, Hwang JY, Cormier KW, Lewis M (2009) J Phys Chem A 113:6192-6196
3. Yuan XL, Zhang H, Xie FJ (2009) THEOCHEM 900:103-109
4. Singh NJ, Min SK, Kim DY, Kim KS (2009) J Chem Theory Comput 5:515-529
5. Rodríguez-Otero J, Cabaleiro-Lago EM, Peña-Gallego A (2008) Chem Phys Lett 452:49-53
6. He L, Cheng J, Wang T, Li C, Gong Z, Liu H, Zeng BB, Jiang H, Zhu W (2008) Chem Phys Lett 462:45-48
7. Escudero D, Frontera A, Quiñonero D, Deyà PM (2008) Chem Phys Lett 456:257-261
8. Vijay D, Sastry GN (2008) Phys Chem Chem Phys 10:582-590
9. Soteras I, Orozco M, Luque FJ (2008) Phys Chem Chem Phys 10:2616-2624
10. Lu YX, Zou JW, Wang YH, Yu QS (2007) Int J Quantum Chem 107:1479-1486
11. Hassan A, Dinadayalane TC, Leszczynski J (2007) Chem Phys Lett 443:205-210
12. Dougherty DA (2007) J Nutr 137:1504S-1508S
13. Yamada S (2007) Org Biomol Chem 5:2903-2912
14. Ishihara K, Fushimi M, Akakura M (2007) Acc Chem Res 40:1049-1055
15. Singh NJ, Lee EC, Choi YC, Lee HM, Kim KS (2007) Bull Chem Soc Jpn 80:1437-1450
16. Mohajeri A, Karimi E (2006) THEOCHEM 774:71-76
17. Cheng J, Zhu W, Tang Y, Xu Y, Li Z, Chen K, Jiang H (2006) Chem Phys Lett 422:455-460
18. Gal JF, Maria PC, Mó O, Yáñez M, Kuck D (2006) Chem Eur J 12:7676-7683
19. Zhang SL, Liu L, Fu Y, Guo QX (2005) THEOCHEM 757:37-46
20. Güell M, Poater J, Luis JM, Mó O, Yáñez M, Solà M (2005) Chem Phys Chem 6:2552-2561
21. Kim D, Hu S, Tarakeshwar P, Kim KS, Lisy JM (2003) J Phys Chem A 107:1228-1238
22. Gal JF, Maria PC, Decouzon M, Mó O, Yáñez M, Abboud JLM (2003) J Am Chem Soc 125:10394-10401
23. Priyakumar UD, Sastry GN (2003) Tetrahedron Lett 44:60436046
24. Amicangelo JC, Armentrout PB (2000) J Phys Chem A 104:11420-11432
25. Armentrout PB, Rodgers MT (2000) J Phys Chem A 104:22382247
26. Ma JC, Dougherty DA (1997) Chem Rev 97:1303-1324
27. Knight LB Jr, Kerr K, Miller PK, Arrington CA (1995) J Phys Chem 99:16842-16848
28. Tague TJ, Andrews L (1994) J Am Chem Soc 116:4970-4976
29. Ruščić B, Mayhew CA, Berkowitz J (1988) J Chem Phys 88:5580-5593
30. Jouany C, Barthelat JC, Daudey JP (1987) Chem Phys Lett 136:52-56
31. Sana M, Leroy G, Henriet C (1989) THEOCHEM 187:233-250
32. Curtiss LA, Pople JA (1989) J Chem Phys 91:4809-4812
33. Treboux G, Barthelat JC (1993) J Am Chem Soc 115:4870-4878
34. Perić M, Ostojić B, Engels B (1997) J Mol Spectrosc 182:280294
35. Perić M, Ostojić B, Engels B (1997) J Mol Spectrosc 182:295308
36. Papakondylis A, Miliordos E, Mavridis A (2004) J Phys Chem A 108:4335-4340
37. Ren F, Cao D, Wang W, Ren J, Hou S, Chen S (2009) J Mol Model 15:515-523
38. Ren F, Cao D, Wang W, Ren J, Chen S (2009) THEOCHEM 896:38-43
39. Ren F, Cao D, Wang W, Wang J, Li Y, Hu Z, Chen S (2008) Chem Phys Lett 455:32-37
40. Ren F, Cao D, Wang W, Hou S, Chen S (2008) THEOCHEM 870:43-48
41. Frisch MJ, Trucks GA, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA Jr, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochtersky JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi L, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03, Revision B.03. Gaussian, Inc, Pittsburgh
42. Reed AE, Curtis LA, Weinhold FA (1988) Chem Rev 88:899-926
43. Scheiner S, Kar T (2002) J Phys Chem A 106:1784-1789
44. Bader RFW (1990) Atoms in molecules-a quantum theory. Oxford University Press, New York
45. Bieger-Konig FW, Bader RFW, Tang TH (1982) J Comput Chem 3:317-328
46. Duijineveldt FB, de Rijdt JCMV Duijineveldt-van, Lenthe JHV (1994) Chem Rev 94:1873-1885
47. Boys SF, Bernardi F (1970) Mol Phys 19:553-566
48. Ebrahimi A, Roohi H, Habibi M, Hasannejad M (2006) Chem Phys 327:368-372

[^0]: F.-d. Ren • J. Ren • S.-n. Liu • Y. Yue

 College of Chemical Engineering and environment, North University of China,
 Taiyuan 030051, China
 F.-d. Ren (\boxtimes)

 Library North University of China,
 Taiyuan 030051, China
 e-mail: fdren888@126.com
 W.-1. Wang

 School of Chemistry and Materials Science,
 Shaanxi Normal University,
 Xi'an 710062, China
 S.-s. Chen

 School of Science, Beijing Institute of Technology, Beijing 100081, China
 W.-z. Xu

 School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China

[^1]: ${ }^{\text {a }}$ Occ.: occupation number
 ${ }^{\mathrm{b}}$ In a.u.
 ${ }^{\mathrm{c}}$ In $\mathrm{kJ} \mathrm{mol}^{-1}$
 ${ }^{\mathrm{d}}$ In me

[^2]: ${ }^{\text {a }}$ Uncorrected binding energies
 ${ }^{\mathrm{b}}$ BSSE-corrected binding energies $\left[-D_{e(\mathrm{BSSE})}\right]$
 ${ }^{\text {c }}$ Binding energies with BSSE and ZPE $\left[-D_{e(\text { BSSE-ZPE })}\right]$ correction
 ${ }^{d}$ Total energies of $\mathrm{HBM}^{+} / \mathrm{M}^{2+} \ldots \mathrm{BH}$
 ${ }^{\mathrm{e}}$ Total energies of $\mathrm{HB}=\mathrm{BH}\left({ }^{3} \Sigma_{g}^{-}\right) \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$
 ${ }^{\mathrm{f}}$ Total energies of $\mathrm{HB}=\mathrm{BH}\left({ }^{1} \Delta_{\mathrm{g}}\right) \ldots \mathrm{M}^{+} / \mathrm{M}^{2+}$

